Caratteristiche e varietà dei gas enclatrati negli idrati di gas naturale recuperati nel Lago Baikal
Rapporti scientifici volume 13, numero articolo: 4440 (2023) Citare questo articolo
511 accessi
1 Citazioni
3 Altmetrico
Dettagli sulle metriche
Sono riportate le composizioni isotopiche molecolari e stabili dei gas legati agli idrati raccolti da 59 siti contenenti idrati tra il 2005 e il 2019 nei sottobacini meridionali e centrali del Lago Baikal. Il δ2H del metano legato agli idrati è distribuito tra − 310‰ e − 270‰, circa 120‰ inferiore al suo valore in ambiente marino, a causa della differenza di δ2H tra l'acqua del lago e l'acqua di mare. I gas legati agli idrati provengono da fonti microbiche (primarie e secondarie), termogeniche e miste. Gas idrati con etano microbico (δ13C: −60‰, δ2H: tra −310‰ e −250‰) sono stati recuperati in circa un terzo dei siti totali e le loro composizioni isotopiche stabili erano inferiori a quelle dell'etano termogenico (δ13C: − 25‰, δ2H: − 210‰). Il basso δ2H dell’etano, che è stato raramente segnalato, suggerisce per la prima volta che l’acqua del lago con bassi rapporti isotopici dell’idrogeno influenza il processo di formazione dell’etano microbico e del metano. Gli idrati di struttura II contenenti metano ed etano enclatrati sono stati raccolti da otto siti. Nel gas termogenico, gli idrocarburi più pesanti dell'etano vengono biodegradati, dando origine a un sistema unico di gas misti metano-etano. La decomposizione e la ricristallizzazione degli idrati che enclatrano metano ed etano hanno portato alla formazione di idrati di struttura II a causa dell'arricchimento di etano.
Gli idrocarburi enclatrati di idrati di gas naturale si trovano nei sedimenti marini/lacustri e negli strati sub-permafrost. Gli idrati di gas naturale non rappresentano solo una potenziale risorsa energetica futura1,2,3,4 ma anche un grande serbatoio di metano (C1), il secondo gas serra più importante5,6. I gas idrati sono composti cristallini in cui le molecole ospiti sono incastrate in gabbie d'acqua costruite da legami idrogeno. Le differenze nella struttura cristallina causate dalla combinazione di gabbie di diverse dimensioni influenzano le loro proprietà fisico-chimiche, come il numero di idratazione, l'occupazione delle gabbie e il calore di dissociazione. Sono state identificate tre strutture cristallografiche degli idrati di gas naturale come: struttura cubica I (sI), struttura cubica II (sII) e struttura esagonale H (sH)7,8. sI comprende gabbie dodecaedriche (512) e tetrakaidecaedriche (51262), mentre sII è composto da gabbie 512 ed esakaidecaedriche (51264). sH ha una grande gabbia icosaedrica (51268) nella sua cella unitaria e può incapsulare molecole ospiti più grandi.
Natural hydrocarbon gases can be primarily classified as biogenic or abiogenic gases. Biogenic gases are further divided into two types: microbial and thermogenic. Microbial gases mainly consist of C1 produced under anaerobic conditions by methanogens classified as archaea, and two pathways are known: CO2 reduction and methyl-type fermentation. In contrast, thermogenic gases are produced by the thermal cracking of organic matter in deep sediment layers and contain heavier hydrocarbons, such as ethane (C2), propane (C3), and butane (C4). Additionally, secondary microbial gases produced by microbes during biodegradation of petroleum appear more abundant than primary microbial gases9. To estimate the origin of natural hydrocarbon gases, diagrams have been proposed and refined using the molecular ratio of heavier hydrocarbons to C1 and their carbon isotope ratios10,11,12,20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e682">13. Recentemente è stato sviluppato uno strumento basato sul web per determinare l’origine del gas naturale utilizzando modelli di apprendimento automatico14.
C1 è il componente principale dei gas ospiti negli idrati di gas naturale presenti nei sedimenti marini/lacustri in tutto il mondo. Comprende principalmente C1 microbico derivante dalla riduzione della CO2, con pochissimi altri componenti idrocarburici, come C2 e C3, che generalmente costituiscono meno dello 0,1%15,16,17,18,19. Gli idrati C1 puri formano sI; quindi, la maggior parte degli idrati di gas naturale trovati fino ad oggi appartengono a sI15.
Empirical diagrams of hydrate-bound gases. (a) C1/(C2 + C3) plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e941">13; (b) C1 δ2H plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e957"13; and (c) C2 δ13C plotted against C1 δ13C, based on the classification of Milkov15. The data for Malenky, Bolshoy, Malyutka, P-2, K-0, K-2 and Goloustnoe are sourced partly from Hachikubo et al.33. The data for Kedr and Kedr-2 are sourced partly from Hachikubo et al.41./p> Figure 2a shows the relationship between C1 δ13C and C1/(C2 + C3) plotted in the empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e1064"13. More than 20 of the 60 total sites have C1 δ13C between − 68‰ and − 65‰ and C1/(C2 + C3) concentrated around 1000–5000, which means that microbial gas is enclathrated in more than one-third of the hydrate-bearing sites in Lake Baikal. However, along the mixing line from the microbial to thermogenic regions, C1 δ13C increases with a decrease in C1/(C2 + C3), passing through the mixed region of microbial and thermogenic gases to thermogenic gas (e.g., K-4, PosolBank, Kedr, and Kedr-2). For the eight sII hydrate data points, C1/(C2 + C3) is nearly constant at 6–7. Furthermore, C1 δ13C seems independent of the crystallographic structure at the same sites but differs considerably in K-3 and K-pockmark. This is because the hydrate-bearing sediment cores are different, even at the same site, indicating that the characteristics of the hydrate-bound gas can change markedly with slight differences in location. Gorevoy Utes43,44 is one of the two oil seep sites and plots in the field of secondary microbial gas (Fig. 2a)9. Another point, ZelenSeep, also plots near the Gorevoy Utes. Most of the data plotted for the thermogenic origin overlap with the field of secondary microbial gas./p> Figure 2b shows the relationship between C1 δ13C and C1 δ2H, which is also plotted in an empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e1130">13. The isotopic fractionation of C1 between the gas and hydrate phases is negligible when considering gas origins using a diagram45. C1 δ13C tends to increase with C1 δ2H. In a diagram by Whiticar12, hydrate-bound C1 in Lake Baikal is interpreted to be of microbial origin via methyl-type fermentation31,32,33,46. However, the latest diagram by Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e1165"13 shows that most of the C1 δ13C values below − 60‰ overlap completely with the microbial origin via CO2 reduction and may possibly be of an early mature origin. Therefore, it is difficult to determine the origin of C1 in Fig. 2b./p> The C1 δ2H of hydrate-bound gas in marine sediments is generally concentrated between approximately − 200‰ to − 190‰ for microbial gas and is greater for thermogenic gas, reaching approximately − 140‰ for gas hydrates retrieved offshore of Vancouver Island and Costa Rica15. The distribution of C1 δ2H of the thermogenic gas ranges from − 300‰ to − 100‰11 and from − 350‰ to − 100‰20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e1586"13. In addition, C1 δ2H tends to increase with C1 δ13C11,12. The factors that determine the C1 δ2H of thermogenic gas have not yet been clarified; however, it can be assumed that hydrogen isotope exchange occurs between C1 and environmental water. Based on the effect of temperature on the hydrogen isotope fractionation between C1 and hydrogen, and between hydrogen and water51, the hydrogen isotope fractionation between C1 and water can be expected to be smaller at higher temperatures. If the thermogenic gas produced by the decomposition of organic matter exchanges isotopically with environmental water during decomposition, the C1 δ2H of thermogenic gas in the deep sediment layers becomes greater than that of microbial gas produced in shallower sediment layers./p> Although little information is available on microbial C3, a mechanism has been proposed by Hinrichs et al. for its formation from acetate and hydrogen58, in which it has been noted that C3 δ13C was greater than C2 δ13C, and Fig. 3b satisfies this relationship. In the area of microbial C2 where C2 δ13C is below − 42‰, C3 δ13C is also relatively low, ranging from − 40‰ to − 30‰, indicating that microbial C3 is more depleted in20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d99138096e1975"13C than thermogenic C3./p> 2.0.CO;2" data-track-action="article reference" href="https://doi.org/10.1130%2F0091-7613%282002%29030%3C0631%3ASMVAMS%3E2.0.CO%3B2" aria-label="Article reference 28" data-doi="10.1130/0091-7613(2002)0302.0.CO;2"Article ADS Google Scholar /p>